

GSMA – PSC Europe Joint Collaboration Critical Communications IoT

Mona Mustapha IoT Technical Specialist

ABOUT THE GSMA

Scaling the IoT

OUR VISION: To enable the Internet of Things, a world in which consumers and businesses harness a host of rich new services, connected by intelligent and secure mobile networks.

CONNECT

Mobile IoT

Raise market awareness and support of commercial licensed spectrum LPWA Solutions. ((

CAPABILITY

Beyond Connectivity

Promote value added services including big data, machine learning, analytics, edge computing and distributed ledger technologies.

CUSTOMERS

Industry Engagement

Working with partners to align strategy and adopt new initiatives, specifically for connected vehicles and drones.

IoT SECURITY

Enabling a trusted IoT where security is embedded at every stage of the IoT value chain.

IOT POLICY & REGULATION

Creating a sustainable environment to support the successful scaling of the IoT.

MEMBERS OF THE IOT PROGRAMME STEERING GROUP:

Q2 2019 Cellular IoT Data

511 operators 195 countries 1.4 billion connections

Source: GSMA Intelligence, 2019

GSMA DEFINITION:

Internet of Things (IoT) describes the coordination of a network of physical objects that contain embedded technology to communicate and sense or interact with their internal states or the external environment.

DEVICES IN THE IoT:

These connected objects include everyday appliances and machines from many vertical industries such as vehicles, utility meters, tracking devices, vending machines, monitors and sensors, consumer electronics and wearable technology, as well as smart phones and tablets.

Communications that need higher priority over other communications in the networks, and require means to enforce this priority

From a confidentiality, integrity and availability perspective, the requirements exceed those of other communications IoT from a Critical Communications perspective, applies to connected objects that fulfil a public safety or business critical function

Communications that need higher priority over other communications in the networks, and require means to enforce this priority

From a confidentiality, integrity and availability perspective, the requirements exceed those of other communications IoT from a Critical Communications perspective, applies to connected objects that fulfil a public safety or business critical function

Communications that need higher priority over other communications in the networks, and require means to enforce this priority

From a confidentiality, integrity and availability perspective, the requirements exceed those of other communications IoT from a Critical Communications perspective, applies to connected
 objects that fulfil a public safety or business critical function

Communications that need higher priority over other communications in the networks, and require means to enforce this priority

From a confidentiality, integrity and availability perspective, the requirements exceed those of other communications IoT from a Critical Communications perspective, applies to connected
 objects that fulfil a public safety or business critical function

Critical Communications IoT Concepts

A potential fire is detected by distributed sensors (thermal, smoke, wind) deployed in communications towers

An alarm is sent to the control centre and to the drone

The drone hangar is opened automatically, the drone flies autonomously to the area and captures information with camera and sensors

The information is sent in real-time to the Control Centre

The drone flies autonomously back to the hangar where it is charged automatically

Paramedic in the field performs an ultrasound scan on a patient in an ambulance

Clinician remotely controls the ultrasound scanner position via haptic glove worn by paramedic, whilst seeing the images in real-time

Clinician uses a joystick to guide the paramedic's hands holding the scanner via haptic glove in real-time

Glove creates small vibrations that direct the paramedic's hand to where the clinician wants the ultrasound sensor to be moved

Assess IoT technology to assist with crowd safety and security management at Headingley Stadium

Use connected smart glasses to complement existing CCTV used

Smart glasses used by security personnel to share pictures and videos of potential incidents with control room

Smart glasses also allowed alerts and other messages from the control room to be displayed as a visual to the user

Analysis of Critical Communications IoT Use Case Service Levels

Network Function Virtualisation (NFV)

Advantages of virtual keyboard

- Performs the same function as a physical keyboard
- Can change behavior (e.g. Swiftkey)
- Only uses hardware resources (screen) when needed
- Keys can be added or removed
- Can be of different sizes

Network Function Virtualisation (NFV)

Advantages of virtual keyboard

- Performs the same function as a physical keyboard
- Can change behavior (e.g. Swiftkey)
- Only uses hardware resources (screen) when needed
- Keys can be added or removed
- Can be of different sizes

Network	Separating network	
Function	functions from the	
Virtualisation	hardware they run on	

Software	Set of techniques to program,
Defined	orchestrate control and
Networks	manage network resources

Dynamic adaptation of networks to use cases

Network slicing concept

- Network slicing enables to dynamically configure the virtualised network element
- The network need not be designed for a specific service / use case
- Each slice has its own properties and is logically separated from other slices
- Operator can create multiple slices on demand serving different needs (IoT, eMBB...)

How to describe the characteristics of a Network Slice?

GSMA created a common way to describe the technical features of a slice: **Generic Slice Template**

https://www.gsma.com/newsroom/all-documents/generic-network-slice-template-v2-0/

Network Slice Attributes – related to use cases defined

 Group Communication Support MBMS SC-PTM 	 Mission-critical capability support Inter-user prioritization Pre-emption Local control 	Mission-critical service support • MCPTT, MCVideo • MCData • IOPS • interworking with LMR
Isolation LevelPhysicalLogical	User data accessInternetPrivate networkLocal	Slice QoS Parameters
Number of terminals	Terminal Density	Downlink and Uplink Throughput per UE

Defining Network Slice attributes – how the values were determined

GSMA

INTERNET

OF THINGS

((d**b**))

No.

PROGRAMME

FIND OUT MORE:

窳

Tet

GET IN TOUCH: iot@gsma.com

gsma.com/loT

FOLLOW ON LINKEDIN: www.gsma.at/IoT