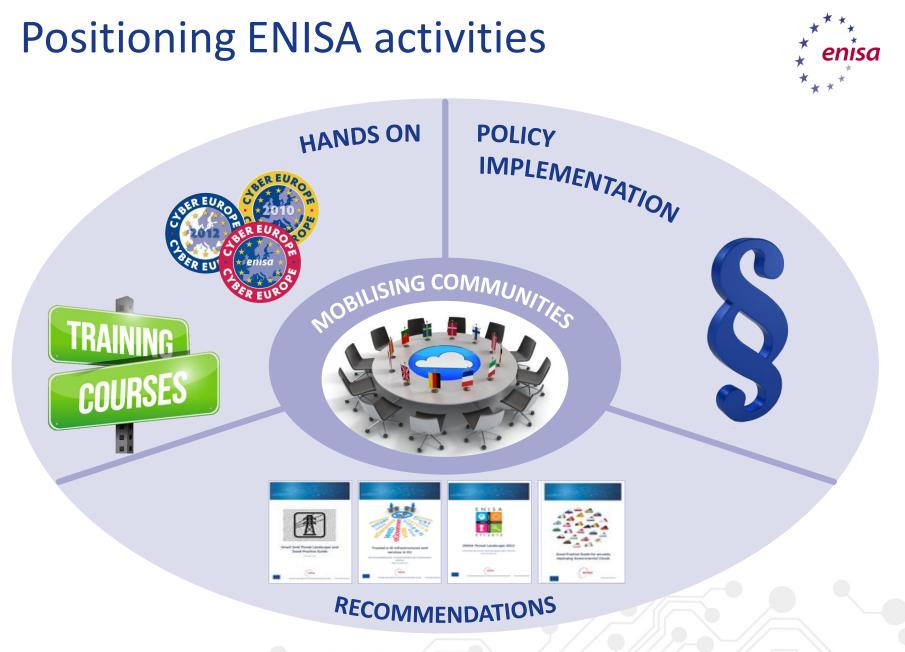
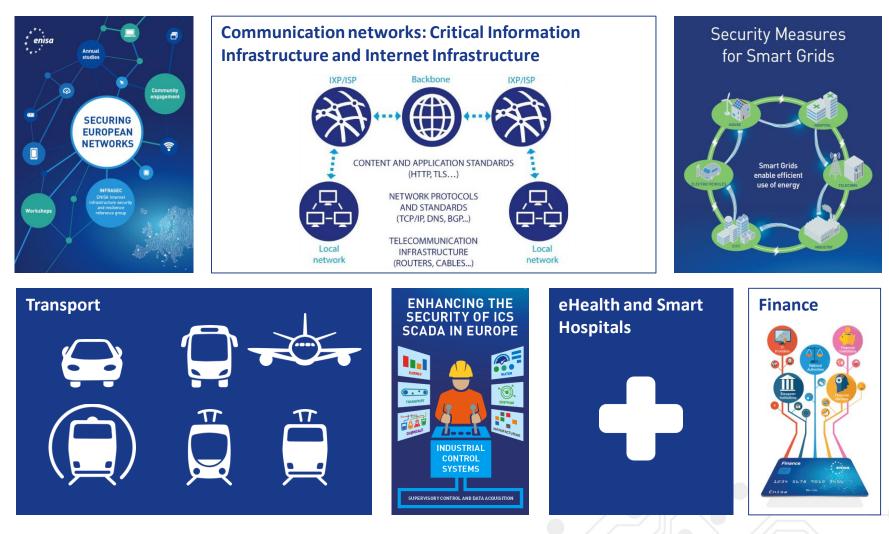
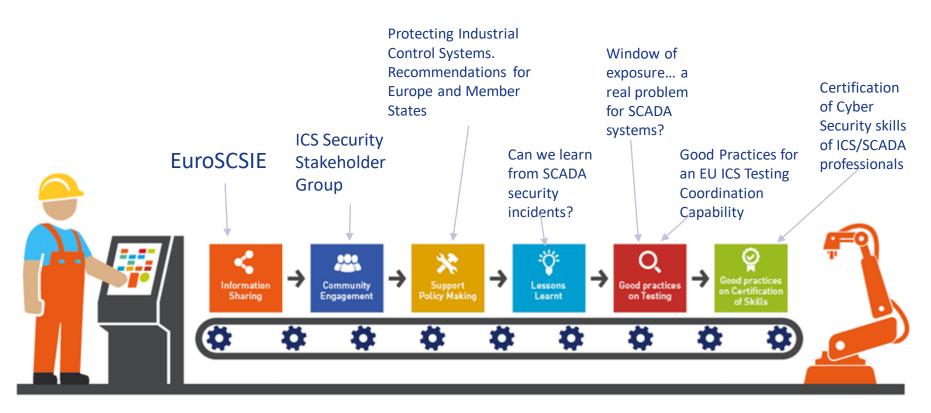


Enhancing infrastructure cybersecurity in Europe


Rossella Mattioli Secure Infrastructures and Services

European Union Agency for Network and Information Security


Securing Europe's Information society


Secure Infrastructure and Services

Cybersecurity for ICS SCADA

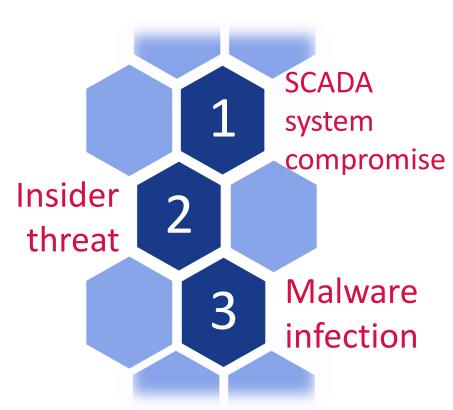
https://www.enisa.europa.eu/scada

Communication network dependencies for ICS SCADA

- Outlined scope and perimeter with EICS SG and EUROSCSIE experts
- Map assets and threats via desktop research and interviews with security researchers and asset owners
- List all possible attacks coming from network exposure
- Examine protocols vulnerabilities

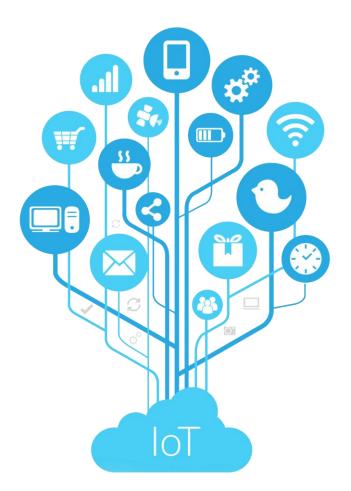
- List good practices
- Develop 3 attack PoCs and mitigation actions
- Define recommendations for
 - Infrastructure operators
 - Vendors
 - EU Member States
 - European Commission

Threats affecting ICS/SCADA systems



THREAT	LIKELIHOOD	IMPACT
Malware (Virus, Trojan, Worms)	Very High	High
Exploit Kits (including rootkits)	Medium	High
Advanced Persistent Threats (APTs)	Low	High
Insider Threats (e.g. Employee incidents)	Low	Crucial
Eavesdropping (e.g. MitM)	Low	High
Communication System/Network Outage	Low	High
(Distributed) Denial of Service	Low	Medium
(Internal/Sensitive) Information Leakage	Low	Medium

Attacks scenarios and PoCs



- Against the administration systems of SCADA
- Against sensors/actuators
- Against the network link between sensors/actuators and HMI or controller
- Against the information transiting the network
- Compromised ICT components as backdoors
- Exploit Protocol vulnerabilities
- Against Control data historian, HMI or controllers

Securing Smart cities and transport infrastructure

Smart Cities as a "system of systems"

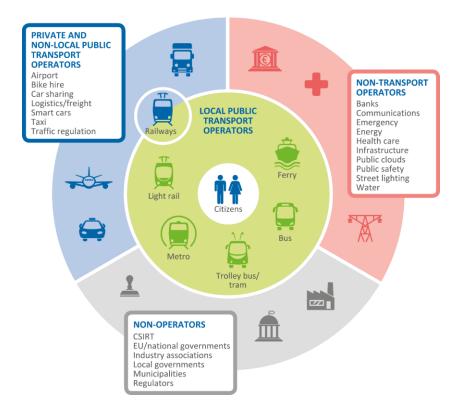
10

New and emerging risks

- ICT Dependency is generalised
- Cohabitation between IP-connected systems and older (legacy) systems
- Data exchange integrated into business processes

	20:10	
	Out of order	
-		
-		

Threats with consequences on the society


- Economical consequences, but not only
- Smart Infrastructures' operators' are not security experts
- Lack of clarity on the concept of "cyber security"

Cyber security measures are not only technical but also <u>operational</u> and organisational

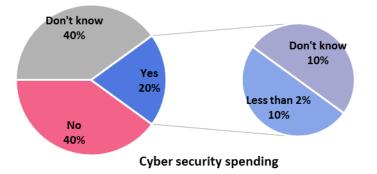
Securing transport infrastructure

11

2015 studies

- Architecture model of the transport sector in Smart Cities
- Cyber Security and Resilience of Intelligent Public Transport. Good practices and recommendations

Objectives


- Assist IPT operators in their risk assessment
- Raise awareness to municipalities
 and policy makers
- Invite manufacturers and solution vendors to focus on security

https://www.enisa.europa.eu/smartinfra

Cybersecurity for Intelligent Public Transport

12

Existing status of security for IPT is limited

- Safety does not integrate security
- Security is not well integrated in organisations
- Awareness level is low

Yet, it is possible to act today

- Understand the threats to critical assets
- Assess applicable security measures
- Collaborate to enhance cyber security

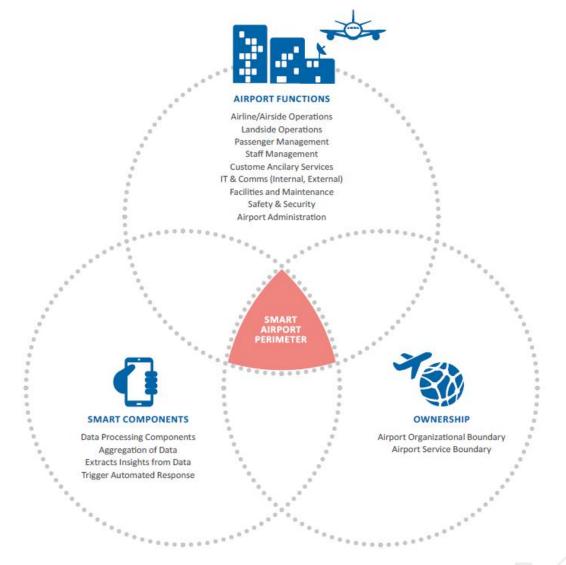
ENISA aims at providing pragmatic solutions to secure transport infrastructure in Europe

Cybersecurity for Smart Cars

- Increased attack surface
- Insecure development in today's cars
- Security culture
- Liability
- Safety and security process integration
- Supply chain and glue code

Preliminary Findings - Smart Cars

- Improve cyber security in smart cars
- Improve information sharing amongst industry actors
- Improve exchanges with security researchers and third parties
- Clarify liability among industry actors
- Achieve consensus on technical standards for good practices
- Define an independent third-party evaluation scheme
- Build tools for security analysis


Cybersecurity for smart airport

The objective of this study is to improve the security and resilience of airports and air traffic control to prevent disruptions that could have an impact on the service being delivered and on the passengers.

Perimeter of the study

The goal is to cover the entire IT perimeter of smart airports:

- Assets inside the airport
- Connected assets outside the airport
- Dependencies on the airway

Threat modelling

HUMAN ERRORS Configuration errors Operator/user errors Loss of hardware Non compliance with policies or procedures

THREATS

THIRD PARTY FAILURES

Internet service provider

Cloud service provider (SaaS / PaaS / SaaS)

Utilities (power / gas / water)

Remote maintenance provider

Security testing companies

MALICIOUS ACTIONS

Denial of Service attacks Exploitation of (known or unknown) software vulnerabilities Misuse of authority / authorisation Networkinterception attacks Social attacks Tampering with devices Breach of physical access controls / administrative controls Malicious software on IT assets (including passenger and staff devices)

Physical attacks on airport assets

SYSTEM FAILURES

Failures of devices or systems Failures or disruptions of communication links (communication networks) Failures of parts of devices Failures or disruptions of main supply Failures or disruptions of the power supply Malfunctions of parts of devices Malfunctions of devices or systems Failures of hardware

Software bugs

Earthquakes Floods Solar flare

Volcano explosion

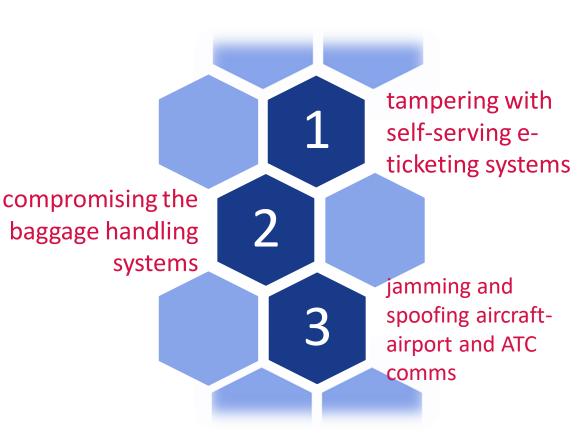
Nuclear incident

Pandemic (e.g. ebola)

Industrial actions (e.g. strikes)

Fires

-8


Shortage of fuel

Space debris & meteorites

Attacks scenarios and PoCs

- Social engineering spear phishing attacks against Airport Administration / ERP
- Network / interception attacks against Airline/Airside Operations (ATM comms)
- Misuse of authority / authorization within landside ops
- Tampering with airport devices to compromise passenger management
- Network / interception attacks against SCADA systems
- Malware on POS
- DDoS on Cloud

Preliminary Findings – Smart airports

- Variety of cyber security practices in airports
- Lack of EU regulations on cyber security of airports
- Lack of guidelines on network architecture, ownership, and remote management
- Evidence-based vulnerability analysis metrics and priorities
- Threat modelling and architecture analysis
- Information sharing
- Multi-stakeholder enable security technologies
- Appropriate Security Governance model
- Skillset of experts safety vis a vis security

Recommendations

 $\bigcirc \bullet \bullet \bigcirc$

ENISA recommendations

- Propose solutions to enhance cyber security
- Targeted at Policy makers, transport Operators,
 Manufacturers and Service providers

Key recommendations (excerpt)

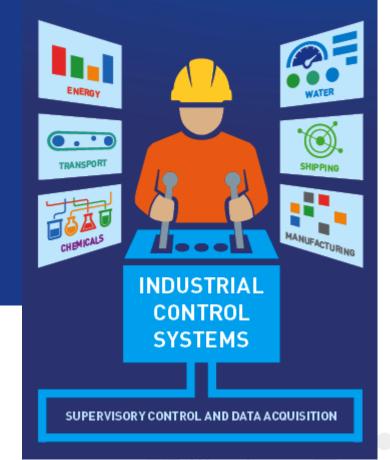
- Promote collaboration on cyber security across Europe
- Integrate security in business processes
- Develop products integrating security for safety

Cyber security for Transport requires a global effort

How you can get involved

- Studies
- Events:
 - Mobile offense and defense – 10th of November- Berlin
 - ENISA @ HUB 22/11 -Berlin
 - ENISA eHealth Cyber
 Security workshop 23/11 Wien

Open call for experts:


- CARSEC Smart Car security expert group
- TRANSSEC Intelligent Public Transport Resilience and Security Expert Group
- ENISA ICS Security Stakeholder Group
- EuroSCSIE European SCADA and Control Systems Information Exchange

https://resilience.enisa.europa.eu/

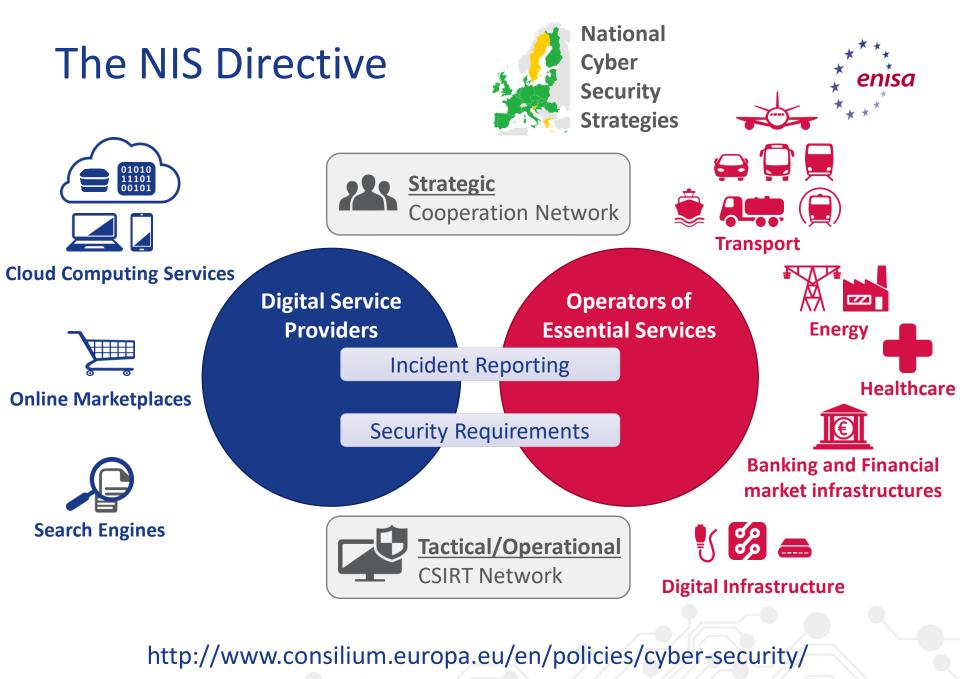
enisa

ENHANCING THE SECURITY OF ICS SCADA IN EUROPE

**** * * ***

The road ahead

The Network and Information Security Directive



Scope: to achieve a high common level of security of NIS within the Union (first EU regulatory act at this level).

Status: 17 May 2016, the Council approved its position at first reading. The next step is approval of the legal act by the European Parliament at second reading. The directive entered into force in August 2016. 21 months after entry into force from transposition

Provisions:

- Obligations for all MS to adopt a national NIS strategies and designate national authorities.
- Creates first EU cooperation group on NIS, from all MS.
- Creates a EU national CSIRTs network.
- Establishes security and notification requirements for operators of essential services and digital service providers

ENISA's overall role and contribution

- Assist MS and EU Comm by providing expertise/advice and by developing/facilitating exchange of good practices, e.g.
 - assist MS in developing national NIS Strategies (NCSS)
 - assist EU Commission and MS in developing min security requirements for ESOs and DSPs
 - assist EU Commission and MS in developing incident reporting frameworks for ESOs and DSPs
 - assist MS in the defining criteria for the designation of ESOs
- Be the secretariat of the CSIRT network and develop with members the network
- Participate/contribute to the work of the Cooperation Group (CG)
- Elaborate advices and guidelines regarding standardization in NIS security, together with MS

NISD Timeline

Date	entry into force +	Milestone	
August 2016	-	Entry into force	
February 2017	6 months	Cooperation Group begins tasks	
August 2017	12 months	Adoption of implementing on security and notification requirements for DSPs	
February 2018	18 months	Cooperation Group establishes work programme	
May 2018	21 months	Transposition into national law	
November 2018	27 months	Member States to identify operators of essential services	
May 2019	33 months (i.e. 1 year after transposition)	Commission report assessing the consistency of Member States' identification of operators of essential services	
May 2021	57 months (i.e. 3 years after transposition)	Commission review of the functioning of the Directive, with a particular focus on strategic and operational cooperation, as well as the scope in relation to operators of essential services and digital service providers	

01 Raise the level of awareness on Infrastructure security in Europe

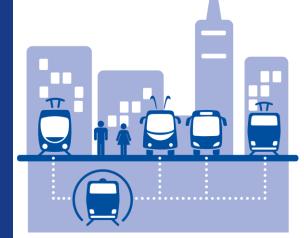
02 Support Private and Public Sector with focused studies and tools

03 Facilitate information exchange and collaboration

04 Foster the growth of communication networks and industry


05 Enable higher level of security for Europe's Infrastructures

Thank you,


Rossella Mattioli

https://www.enisa.europa.eu/

