SAFEcrypto: Secure Architectures of Future Emerging cryptography

PSC Europe December 2015 - Elizabeth O'Sullivan,

Centre For Secure Information Technology, Queen's University Belfast

This project has received funding from the European Union H2020 research and innovation programme under grant agreement No 644729

SAFEcrypto Project

- 4-year project funded commenced in January 2015
- new generation of practical, robust and physically secure post quantum cryptographic solutions
- Academic partners
 - Institut National De Recherche en Informatique et en Automatique (France)
 - Queens University Belfast (UK)
 - Ruhr-Universitaet Bochum (Germany)
 - Universita Della Svizzera Italiana (Switzerland)
- Industry partners
 - EMC/RSA
 - HWCommunications Ltd
 - Thales

HWCommunications Cyber Security and Resilience

Quantum Technology – NSA's Efforts

Excerpts from the "black budget," Volume 2, "Combined Cryptologic Program":

(U) RESEARCH & TECHNOLOGY (U) PENETRATING HARD TARGETS

(U) Project Description

(S//SI//REL TO USA, FVEY) The Penetrating Hard Targets Project provides proof-of-concept technological solutions to {...} enable:

{...}

(S//SI//REL TO USA, FVEY) Breaking strong encryption.

{...}

 (S//SI//REL TO USA, FVEY) Conduct basic research in quantum physics and architecture/engineering studies to determine if, and how, a cryptologically useful quantum computer can be built.

NSA funding a \$79.7 million research program to build a 'cryptologically useful quantum computer'

S. Rich, B.Gellman, The Washington Post (Jan 2014)

Quantum Technology – Recent Breakthroughs

Home » Physics » Quantum Physics » October 5, 2015

Crucial hurdle overcome in quantum computing

October 5, 2015

Letters to Nature – October 2015 - Researchers in University of New South Wales Australia have demonstrated two qubit logic gate in silicon

Quantum Technology – Commercial Progress

D-Wave's current model: 1000qubit machine (2015).

Bought by Lockheed Martin/ Google/NASA/Los Alamos Labs

Quantum Optimisation Technology

Evidence of quantum-ness is emerging – but it is not known to what extent this is occurring

helping to advance the research in Quantum Computing

Quantum Technology

What happens if/when quantum computers become a reality ?

Commonly used Public-key encryption algorithms (based on integer factorisation and discrete log problem) such as:

RSA, DSA, DHKE, EC, ECDSA

will no longer be secure...

Symmetric algorithms appear to be secure against quantum computers (and Grover's algorithm) by simply increasing the associated key sizes.

Quantum-Safe Cryptography

Post-Quantum or Quantum-Safe Cryptography: conventional *non-quantum* cryptographic algorithms that will remain secure even after practical quantum computing is a reality.

- Code-based
- Hash-based
- Multivariate-quadratic
- Lattice-based

Advantages of Lattice-based Cryptography

- Underlying operations can be implemented efficiently
- Promising as allows for other constructions/applications beyond encryption/signatures , eg. IBE, ABE, homomorphic encryption, etc.

Quantum-Safe Cryptography

Transition to Quantum-Safe cryptography in the not so distant future...

NATIONAL SECURITY AGENCY

CENTRAL SECURITY SERVICE

Defending Our Nation. Securing The Future.

IOME ABOUT NSA ACADEMIA	BUSINESS CAREERS	INFORMATION ASSURANCE	RESEARCH	PUBLIC INFORMATION	CIVIL LIBERTIES
Information Assurance	Home > Information Ass	urance > Programs > NSA Suite B	Cryptography		SEARCH
About IA at NSA	Cryptograph	y Today			
IA Client and Partner Support					
IA News	In the current global environment, rapid and secure information sharing is important to protect				
IA Events	our Nation, its citize	ens and its interests. Stror	ng cryptogra	phic algorithms and a	secure protocol
IA Mitigation Guidance	ubiguitous need for secure, interoperable communications.				
IA Academic Outreach	abiquito do noca foi				
IA Business and Research	Currently, Suite B cryptographic algorithms are specified by the National Institute of Standards				
▼ IA Programs	and Technology (N	IST) and are used by NSA'	s Informatio	n Assurance Director	ate in solutions
Commercial Solutions for	approved for protecting classified and unclassified National Security Systems (NSS). Below, we announce preliminary plans for transitioning to quantum resistant algorithms.				

August 2015

Overall Goal

SAFEcrypto will provide a new generation of **practical**, **robust and physically secure post-quantum cryptographic solutions** that ensure **long-term security** for future ICT systems, services and applications.

SAFEcrypto will deliver *proof-of-concept demonstrators* of the latticebased cryptographic primitives applied to 3 case-studies:

- Satellite Key Management
- Commercial Off-The-Shelf (COTS) in Public Safety Communication
- Privacy-preserving municipal data analytics

1. Secure communications of networked space-based entities

Current symmetric algorithm approaches not suitable for next-generation space-based entities

Future Deployments:

- Flexibility for
- Symmetric key compromise
- Protection of key loading
- Perfect forward secrecy

SAFEcrypto - Feasibility of a lattice-based key management solutions for applications with bandwidth, latency and unreliable channel issues

2. Trusted components for critical communication applications

Use of COTS devices and legacy equipment underpin the operation of critical services - need to secure the communication between these devices.

SAFEcrypto will provide:

- New add-on quantum-safe crypto
 capability to legacy equip & COTS devices
- High-speed crypto for bandwidth hungry applications
- New key-exchange techniques within
 disparate new & legacy systems/networks

www.qinetiq.com

3. Privacy-preserving municipal data analytics

Significant benefits possible through collaborative analytics of large government-owned data sets; however, this needs appropriate management of the accessibility and privacy of the information.

SAFEcrypto will provide:

- A lattice-based ABE scheme and key management approaches to allow for effective and privacy-preserving collaborative analytics

gigaom2.files.wordpress.com

SAFEcrypto Objectives

Project Objectives for Lattice-based Cryptography

- Conduct Vulnerability and risk assessment of the identified case studies.
- Derive Practical lattice-based cryptographic constructions (digital signature, authentication, ABE and IBE.
- Design and implement hardware architectures for each of the proposed primitives (constrained devices as well as high performance).
- Design and implement **open-source software routines** for the primitives
- Investigate **physical attack-resistant design methodologies** for lattice-based hardware and software implementations.
- Develop effective models for the management, storage and distribution of keys
- Build hardware/software co-design **proof-of-concept demonstrators** to illustrate the feasibility of the lattice-based cryptographic hardware and software architectures in providing long-term security for the three case studies

SAFEcrypto Objectives

Quantitative Objectives

- In comparison to existing RSA and ECC-based public-key cryptosystems:
 - 10-fold speed-up in throughput
 - Satellite use-case
 - Privacy-preserving data analytics use-case
 - 5-fold reduction in energy consumption
 - Critical communication use-case

SAFEcrypto Objectives

Dissemination of project results and activities

Academic conferences

Industry Events

Standardization initiatives

ETSI

World Class Standards

Contribution to open source

SAFEcrypto: Secure Architectures of Future Emerging cryptography

www.safecrypto.eu

This project has received funding from the European Union H2020 research and innovation programme under grant agreement No 644729

www.SAFEcrypto.eu @SAFEcrypto