

Copyright 2012

Designing Information Systems for Critical Infrastructure and Public Protection

PSCE Conference Helsinki – 31/5/2012

Wolfgang Vorraber, Siegfried Vössner, Gerald Lichtenegger

Engineering- and Business Informatics Graz University of Technology

Introduction

- Introducing Design Patterns for Information Systems
- Examples from research projects
 - ANALYSIS/SYNTHESIS: Search & Rescue in Alpine Regions
 - DESIGN: IT Architecture for Public Protection
 - DESIGN: Multi Actor Value Networks
 - EVALUATION: Localization solutions for large Events
 - Self Experience: Various projects
- Conclusion & Outlook

For "Civil Protection" Agencies, Operating at a Large Scale, the Use of IT Poses some Additional Problems

INFORMATION (DATA) is a critical factor

PROJECT EXAMPLES

Modern IT and Operations Research could provide powerful tools to handle these situations, but they often face big challenges:

Vehicle Routing in Flooded Areas

- Problem: dynamic routing of emergency vehicles when roads are (increasingly) flooded
- Partner: Austrian Civil Protection Agency
- Problem: Real time data availability and incompatible IT Systems
- Consequence: Project postponed/cancelled

Lower-Austria 2009, © APA

IT-Support for Mission Critical Supply Chain Operations

- Problem: Evaluation of a new, modern inventory- and distribution system for military
- Partner: Military Chief Logistics Officer
- Problem: Data availability and systems incompatibility
- Consequence: Project postponed/cancelled

Introduction

• Introducing Design Patterns for Information Systems

- Examples from research projects
 - ANALYSIS/SYNTHESIS: Search & Rescue in Alpine Regions
 - DESIGN: IT Architecture for Public Protection
 - DESIGN: Multi Actor Value Networks
 - EVALUATION: Localization solutions for large Events
 - Self Experience: Various projects

Conclusion & Outlook

4

Design Patterns for Information Systems for PPDR

- Introduction
- Introducing Design Patterns for Information Systems
- Examples from research projects
 - ANALYSIS/SYNTHESIS: Search & Rescue in Alpine Regions
 - DESIGN: IT Architecture for Public Protection
 - DESIGN: Multi Actor Value Networks
 - EVALUATION: Localization solutions for large Events
 - Self Experience: Various projects
- Conclusion & Outlook

RESEARCH PARTNERS

Federal State Government of Styria

Austrian Ministry of the Interior

Austrian Federal Police

Mountain Rescue Service Austria

Fire Service Association of Styria

Austrian Red Cross

ANALYSIS Processes – Work- and Information Flow

Source: MBI, project SARONTAR

8

SYNTHESIS Levers Along the Process Chain

Source: MBI, project SARONTAR

9

- Introduction
- Introducing Design Patterns for Information Systems
- Examples from research projects
 - ANALYSIS/SYNTHESIS: Search & Rescue in Alpine Regions
 - DESIGN: IT Architecture for Public Protection
 - DESIGN: Multi Actor Value Networks
 - EVALUATION: Localization solutions for large Events
 - Self Experience: Various projects
- Conclusion & Outlook

DESIGN ARCHITECTURE – COMPONENT CATEGORIES

BASIC COMPONENT STRUCTURE

SUBSTRUCTURE

LEAVES / END NODES

Short lifecycle (2-4 years): Get replaced due to fundamental performance upgrades within an application technology e.g. GSM cell phone - Smartphone with GPS

SUBSTRUCTURE

Each component category consists of different layers that interact based on standardized open interfaces.

BACKBONE

Long lifecycle (>10 years): Get replaced due to fundamental performance upgrades of basic-technologies e.g. ANALOG/DIGITAL

DESIGN: Architecture – Concepts "Predetermined Breaking Points"

Technology Lifecycles

Lifespan of high-tech devices declines tremendously

Technology lifecycles get shorter

Technology Upgrade / Replacement

Technology replacements are required more frequently

Design Consequences

IT System Architecture has to provide concepts that support the

replacement of system components

- → Modularization
- → Predetermined breaking points

- Introduction
- Introducing Design Patterns for Information Systems
- Examples from research projects
 - ANALYSIS/SYNTHESIS: Search & Rescue in Alpine Regions
 - DESIGN: IT Architecture for Public Protection
 - DESIGN: Multi Actor Value Networks
 - EVALUATION: Localization solutions for large Events
 - Self Experience: Various projects
- Conclusion & Outlook

Motivation

Design

- Value Networks
- Represent value exchanges between actors in a value chain
- Value chain (Porter¹) is not linear any more²,
 thus Value Networks are created → Complexity rises

- Existing Value Network Notations³ are limited
 - No analysis of dynamics in relations between participants
 - No consideration of motivation levels of participants
 - \rightarrow Unexplainable effects occur

Source: MBI, ¹ Porter, 1985; ² Biem & Caswell, 2008; ³ Gjordin et al., 2000; Yu, 1994; Allee, 2009; ³ Weigand et al. 2007; Biem & Caswell, 2008 Enhancements to existing Value Network Notations are required

Example: Value Network

Basic elements of Extended Value Network Notation

- Economic Entity^{*}
 - Agent^{*}: Designation of the participant
 - Capabilities^{*}: Dynamic aspects processes, skills
 - Assets^{*}: Static aspects tangible (e.g. IT-systems) and intangible things (e.g. knowledge) tied to economic entity
- Value Exchanges
 - Provision link*: Value provision in direction of end customer
 - Revenue link: Value provision against direction of end customer
- Transfer Objects
- Information^{*}: Exchange of information
- Service^{*}: Provision of a service
- Monetary Value: Exchange of a monetary value
- Intangible Value: Exchange of an intangible value

Source: MRL 1 Vreem 1064: Vreem 1005: 2 Russ 1061: Giacolone & Greenber

Endogenous Motivation

- Description
 - Motivation level of employees of an economic entity
 - Based on "Expectancy Theory" of Vroom¹
 - Employees prioritize their personal tasks
- Categorization
 - Defensive (-): The agent performs the value activity only if it is not conflicting with his own goals. Employees give least attention to value network task → "Passive Aggression²"
- Neutral (~): Agents performs the value activity collaboratively in a timely manner.
- Active (+): The agent performs and pursues the value activity actively.

Exogenous Influences

- Description
 - External influence on employees (e.g. Management)
 - Based on:
 - Porter & Lawler¹ "Extrinsic rewards"
 - Kelman² Exogenous influence on a persons compliance
- Categorization
 - Defensive (-): The external force disencourages the value activity.
 - Neutral (~): The external force neither endorses, facilitates nor discourages the activity.
 - Active (+): The external force actively encourages and facilitates the activity (e.g. special reward programs, management inquiries about project progress or performance).

Typical Combinations: Endogenous Motivation - Exogenous Influences

- Introduction
- Introducing Design Patterns for Information Systems
- Examples from research projects
 - ANALYSIS/SYNTHESIS: Search & Rescue in Alpine Regions
 - DESIGN: IT Architecture for Public Protection
 - DESIGN: Multi Actor Value Networks
 - EVALUATION: Localization solutions for large Events
 - Self Experience: Various projects
- Conclusion & Outlook

TECHNOLOGY STUDY FIS Night Race

Mission Support:

Localization of Alpine Police and Task Force via GPS equipped smart phones

Wireless data transfer of pictures taken by the observation unit to the command centre

Secure, web-based access to localization data and pictures to authorized external users

Benefit:

- Localization without using radio communication
- Improved assessment based on latest on-scene pictures
- Complete mission documentation based on time stamped path records

Involved parties:

- Observation unit with mobile camera equipment
- Alpine Police (three units)
- Task Force (five units)
- Police helicopter (mobile FLIR unit)
- Command center, remote online observers

EVALUATION IT support for Illegal Immigration & Organized Crime Operations

KHOCER

Command Center

Notebook connected to web-based command a center software via GSM modem

Source: MBI, project ISKOS

- Introduction
- Introducing Design Patterns for Information Systems
- Examples from research projects
 - ANALYSIS/SYNTHESIS: Search & Rescue in Alpine Regions
 - DESIGN: IT Architecture for Public Protection
 - DESIGN: Multi Actor Value Networks
 - EVALUATION: Localization solutions for large Events
 - Self Experience: Various projects
- Conclusion & Outlook

Self Experience is a Main Source of Insight for Systems Design

... and Stress

- Introduction
- Introducing Design Patterns for Information Systems
- Examples from research projects
 - ANALYSIS/SYNTHESIS: Search & Rescue in Alpine Regions
 - DESIGN: IT Architecture for Public Protection
 - DESIGN: Multi Actor Value Networks
 - EVALUATION: Localization solutions for large Events
 - Self Experience: Various projects

Conclusion & Outlook

Conclusion and Outlook

- We have developed and applied this framework in the course of several research projects in the area of information systems support for PPDR
- Compared to conventional system design approaches, we heavily rely on user input and interaction and use
 - bottom-up design for IT support (user-centered)
 - top-down design for systems architecture
- Advantages over conventional approaches have been demonstrated on smaller solutions and have yet to be proven for the entire framework
- We are seeking for more real world problems to apply our approach. They will serve as case studies for the evaluation and further improvement of our design patterns

Bibliography

- Allee, V. *The Future of Knowledge: Increasing Prosperity through Value Networks.* Boston: Butterworth-Heinemann, 2003. Value-creating networks: organizational issues and challenges, *The Learning Organization,* 2009.
- Biem & Caswell, "A value network model for strategic analysis," in *Proceedings of the 41st Annual Hawaii International Conference on System Sciences,* 2008, pp. 361-361.
- Buss, A. H. *The Psychology of Aggression*. New York: Wiley, 1961.
- Giacalone & Greenberg, Antisocial Behavior in Organizations. California: SAGE Publications, Inc., 1997.
- Gordijn, J. Akkermans, H. and Van Vliet, H. "Business modelling is not process modelling," in *Conceptual Modeling for E-Business and the Web,* Stephen W. Little and Heinrich C. Mayr, Ed. Berlin: Springer, 2000, pp. 40-51
- Kelman, H. C. "Processes of opinion change," *Public Opinion. Q.,* vol. 25, pp. 57-78, 1961.
- Porter, M. Competitive Advantage: Creating and Sustaining Superior Performance. New York: The Free Press, 1985.
- Porter, L.W. & Lawler, E.E. Managerial attitudes and performance, 1. print edn, Richard D. Irwin, Homewood, Illinois, 1968.
- R. M. Steers, R. T. Mowday and D. L. Shapiro, "Introduction to special topic forum: The future of work motivation theory," *The Academy of Management Review*, vol. 29, pp. 379-387, 2004.
- Vroom, V. H. Work and Motivation. New York: Wiley, 1964.
- Vroom, V. H. Work and Motivation. San Francisco: Jossey-Bass, 1995.
- Weigand et al. "Strategic analysis using Value Modeling-The c3-Value Approach," in *Proceedings of 40th Hawaii International Conference on System Sciences*, 2007, pp. 175c-175c.
- Yu & Mylopoulos "From ER to "AR"—Modelling strategic actor relationships for business process reengineering," in *Entity-Relationship Approach—ER'94 Business Modelling and Re-Engineering,* Loucopoulos, Ed. Berlin: Springer, 1994, pp. 548-565.

Thank You

for your attention

