Distributed Autonomous and Resilient Emergency Management System (DARE): A 5G Perspective

Deepak G. C.

Research Associate Wireless Multimedia and Network Research Group Kingston University London, UK <u>D.Gc@kingston.ac.uk</u>

24/05/2018

Kingston University London

Table of Contents

- DARE Project Briefing
- Project Aim
- Overview of Post-Disaster Communication
- Post-Disaster Wireless Network Architecture
- D2D Communication for Post-Disaster Scenario
- UAVs for Post-Disaster Communication
- 5G Testbed Plan
- Conclusion

About the Project

- Distributed Autonomous and Resilient Emergency Management Systems (DARE)
- Funded by: Engineering and Physical Science Research Council (EPSRC), UK
- Scheme: Global Challenge Research Fund (GCRF)
- Project Duration: May 2017 to April 2020 (3 Years)
- Project Partners:

- Advisory Board: O2, BT, Huawei, UbiTech
- Operational Budget: £1.3 million
- Target: Analytical solutions and testbed design

Aim of the Project

- To improving the resilience of critical infrastructure and essential services to severe disruption from natural hazards
- DARE to be founded upon multiple communication platforms: wireless sensor networks (WSNs), machine to machine (M2M) networks, WiFi/Ad-hoc/Mesh-based cooperative ubiquitous networks and future cellular networks (5G and beyond)
- Advanced network routing, radio access network architecture design and advanced computing algorithms including machine learning and computational intelligence
- Testbed design on the 5G framework (MIMO, mmWave, D2D communication, dense HetNet) and the computer simulation study of the DARE network

5G Requirements

• The 'full' 5G System includes:

eMBB (enhanced Mobile Broadband) URLLC (Ultra Reliable Low Latency Communications) mMTC (massive Machine Type Communications)

- Higher carrier frequency (sub GHz band)
- Larger bandwidth (>100 MHz) \rightarrow Carrier aggregation
- Large antenna array (due to short wave length) \rightarrow Beamforming
- Device-to-device (D2D) communication
- Network densification and HetNet
- Post-disaster communication requirements:

a) Network connectivity/coverage is more important than throughout

b) Convergence of multiple wireless communication technologies

Overview of Post-Disaster Communication

A typical post-disaster network scenario: convergence of multiple technologies

Post-Disaster Wireless Network Architecture

- Based on our study, there are three main network models in postdisaster scenario which need unique solution for each.
 - Congested Network
 - Partially Connected Network
 - Isolated Network
- Congested Network: When subset of functioning BSs (in post-disaster) receives user data/voice traffic more than BSs can handle.....
- More Traffic Less power supply less processing capacity
- Priority group/ Priority Services
- Machine learning for optimal radio resource allocation

Post-Disaster Wireless Network Architecture....

- Partially Connected Network: When the BSs are partially damaged, subset of users or emergency services are disconnected.
- D2D/multi-hop D2D to provide better network coverage and lower energy consumption
- Spectrum allocation for underlay D2D
 - UAV-assisted D2D communication
- Isolated Network: Users do not receive any control signals from BSs
- MANET could be formed among users
- Efficient routing protocol and signalling (e.g., ChaMeLeonV2 has been developed)
- Autonomous route formation towards BSs
- Higher energy efficient routing protocols

Mobile Ad Hoc Networks

- MANETs and Machine Learning based Routing Protocols DARE Perspective
- Operate in decentralized mode (no need for access point)
- Proposed Routing Protocols Multipath ChaMeLeon version 2 (M-CMLv2)*

*Ladas, Alexandros, G. C., Deepak., Pavlatos, Nikolaos, and Politis, Christos., "A Selective Multipath Routing Protocol for Ubiquitous Networks". Elsevier Ad Hoc Networks Journal, vol. 77, pp. 95-107, 2018

D2D Communication for Post-Disaster Scenario

- During typical post-disaster scenarios, network events are:
- Base Stations Thinning Process due to dysfunctional Base stations
- Base Station Superposition, when new BSs (vehicular or UAVs) are added
- D2D Route Formation overlaying cellular communication.

- Improved network coverage
- Network throughout is less important then the network coverage during the golden hour of post-disaster network scenario.

D2D Communication for Post-Disaster Scenario...

D2D Communication and UAVs for Reliability and Connectivity:

- D2D communication, mobile BS and UAVs for partially-isolated network during post-disaster to provide better coverage.
- The mathematical analysis of post-disaster network to understand the network behaviour in such scenarios.
- BS thinning, BS superposition, D2D pair formation, Optimal UAV positioning
- BS thinning → dysfunctional BSs, BS superposition → added BSs (e.g., UAVs) (Both Occurs simultaneously during particular post-disaster scenario)
- Both of them preserve the original point process
- In addition, when both happens simultaneously, it preserves the point process.
 (PPP → PPP)

D2D Communication for Post-Disaster Scenario...

D2D Communication and UAVs for Reliability and Connectivity:

- In this work the BSs and users distribution follow the Poison point process
- It has been studied that how does it behave when it undergoes thinning of BS and superposition of BSs or D2D link formation
- Additional BSs have been considered in terms of UAVs (mostly LOS comm.)
- From energy efficiency point of view, the users are forced to either cellular or D2D mode (X and Y: independent and mutually exclusive events)

UAVs for Post-Disaster Communication

- It can maintain better communication channels → higher chance of short-distance line of sight communication
- UAVs \rightarrow {<u>ubiquitous coverage</u>, relaying unit, data collection}
- Energy Consumption = <u>Radio Energy</u> + Propulsion Energy
- Following are the targets:
 - a) Optimization of altitude of UAVs for maximum coverage
 - b) Optimization of UAVs distribution to improve energy efficiency
 - c) Optimization of trajectory of UAVs to cover maximum users
- Machine Learning approach: The UAVs must have learning capability to improve the energy efficiency and maximize the coverage
- Reinforcement Learning (Q Learning approach)

UAVs for Post-Disaster Communication

u(x*,y

d

θ

h*

- Optimal height of UAVs to improve coverage
- Optimal trajectory of UAV
- Reinforcement Learning Approach to learn the optimal route the UAV takes
- Improvement in users in outage and lower dissatisfaction users due to Q-learning algorithm

*Paulo Valente Klaine, João Pedro Battistella Nadas, Richard Demo Souza, Muhammad Ali Imran, "Distributed Drone Base Station Positioning for Emergency Cellular Networks using Reinforcement Learning", Cognitive Computation, 2018.

DARE Overlaying 5G Testbed

- Verify the distributed, resilient and autonomous designs through simulations and real-world testbed implementations using existing ns-3, OPNET, MATLAB
- Testbed for network resilience and QoS support functionalities for an autonomous critical communication platform
- To be showcased to wider industrial and academic community, including GCHQ and Defense Science and Technology Laboratory (DSTL)
- The plan is to use the infrastructure provided by the SoftFIRE testbed, currently deployed at the **University of Surrey** (5GIC).

Indoor portion of the testbed: over 1000 heterogeneous embedded devices, with different sensing capabilities, 6 indoor Lampsites and 6 access points.

Outdoor portion is a network: 14 outdoor 2xsector and 5 omnidirectional base stations creating a self-contained, small-scale, low-power mobile network.

Use of UAVs, subject to various legal requirements.

THANK YOU...