

Flexible Broadband Radio Communication for airborne disaster relief operation

2015, PSCE conference, 27th and 28th May, Graz Michael Schmidt

www.joanneum.at

Motivation

<u>Near real time</u> assessment of disaster areas with airborne sensor data

Geo-referenced information

Sequence of 40 RGB images, superimposed on Google Earth

Multi Sensor

Wide coverage area

Additional Motivation

- Adaptive mission processing
- Cost effective solution
- Suitable for small planes

TOC

Requirements

- Frequencies
- Access system
- Link budget
- Hardware solution
- Multi ground station
- Tracking system of the antenna
- Satellite link

- Optical / thermal images with a ground resolution of 10cm/40cm, @700m
- Return link for: ACK, Monitoring and control of the on-board equipment and communication to the on board operator, < 500KBit/s</p>
- compressed by a factor 10 to 30 results in up to 8 Mbit/s; Images every 4 second

Un-compressed vs. Compressed Ortho Image

- High frequency agility from 1,9 to 6 GHz because of different national regulations and license costs
- Range at > 30km with line of sight
- High spectral efficiency
- Small antenna and low weight for the airborne unit
- Bidirectional IP Interface
- Satellite link directly from the plane for wide coverage areas and fast response

Frequencies

- Access system,
- Link budget
- Hardware solution,
- Multi ground station,
- tracking system of the antenna.
- Satellite link,

Frequencies

- High frequency agility from 1,9 to 6 GHz because of different national regulations and license costs
- 1900-1920 MHz and 2010- 2015MHz (CEPT)
- Other candidates: 2070-2110 MHz and
- 🝯 4400-4516 MHz
- 🝯 5080 MHz
- 5,8 GHz Japan

Frequencies

Access system,

- Link budget
- Hardware solution,
- Multi ground station,
- tracking system of the antenna.
- Satellite link,

Access System

FDD: - two frequencies are necessary!

+ simple front end

TDD: + single frequency !
+ Up / downlink BW variable
– circulator (difficult because of wide band demand); Switch required. (isolation!)

TDD front end

TDD framing structure

Frequencies

Access system,

Link budget

- Hardware solution,
- Multi ground station,
- tracking system of the antenna.
- Satellite link,

Link Budget

Frequency	1,9 GHz to 6 GHz; Circular
3dB-Bandwidth	10,8 MHz
Channel filter roll-off	0,35
Duplexing	TDD
Modulation scheme	QPSK
Transmit Antenna Gain	0dB
Tx Power P1dB	31 dBm
FEC	Duo-binary Turbo code
Coderate	4/5
Margin	5,7dB
Rx Antenna Gain	24 dB
Maximum downlink data rate	8 Mbit/s
Maximum uplink data rate	0,5 Mbit/s
Maximum Distance	30 km

.

Frequencies

Access system,

Link budget

Hardware solution,

- Multi ground station,
- tracking system of the antenna.

Satellite link,

Hardware solution from Ethernet to RF

- Frequencies
- Access system,
- Link budget
- Hardware solution,

Multi ground station,

- tracking system of the antenna.
- Satellite link,

Multi ground station network: forward- link

Tracking System

- Mono-pulse is good but expensive and need first access information (telemetry channel)
- Step track is cheaper then Mono-pulse, less performance but need telemetry channel for first access
- Operation with telemetry channel only (broadcast)
- Using ADS-B information (1090MHz)

Tracking Antenna

- Frequencies
- Access system,
- Link budget
- Hardware solution,
- Multi ground station,
- tracking system of the antenna.

Satellite link,

Satellite connection

- Data-rate up to 1 Mbit/s from the plane to the Internet
- Return up to 4Mbit/s
- Integration in a DA42 was verified

Summary

- Real time response for disaster management
- Integrated and tested a LOS link from a DA42
- Data-rates verified
- ASDS-B tracking works well
- Satellite link for wide area coverage implemented

The activity was supported by:

bm

Austrian Ministry for Transport, Innovation and Technology

European Space Agency IAP /ARTES20 Programm

Thank you for your attention!

www.joanneum.at